Born To Be Gradient
Predicting Exceptions of Compound Tensing in Korean

Hyunjung Lee

OCP 2019, University of Verona

17 January 2019
How to deal with exceptionality?

- **Compound Tensing (CT)** in Korean unexpectedly fails to apply to certain Noun-Noun compounds (Jun 2001; Zuraw 2011; Ito 2014; Kim 2016).
- Should this exceptionality be dealt with the grammar or through lexicalization?

Gradient Symbolic Representation

- I argue for an account in terms of **Gradient Symbolic Representations** (GSR; Smolensky and Goldrick, 2016, Rosen 2016).
- The intrinsic property of GSR captures the **nature of gradient inclination for CT**, which is impossible with other systems.

Learnability

- An **error-driven algorithm** also shows that the scalar activities are learnable.
Data
Korean has a three-way distinction in terms of laryngeal contrast in obstruents

(1)

(a) /pul/ → [pul] ‘fire’
(b) /pʰul/ → [pʰul] ‘grass’
(c) /pʼul/ → [pʼul] ‘horn’
Korean has a three-way distinction in terms of laryngeal contrast in obstruents

(1)

(a) /pul/ → [pul] ‘fire’
(b) /pʰul/ → [pʰul] ‘grass’
(c) /p’ul/ → [p’ul] ‘horn’
Compound Tensing

- **Compound Tensing (CT)**:
 When a compound consist of two nouns, W_A and W_B, initial plain obstruents of W_Bs undergo junctural processes including *obstruent tensification*.

\[(2)\]

(a) /hɛ/ + /pi/ → [hɛ.p’i] post Vowel
(b) /kail/ + /pi/ → [ka.il.p’i] post Lateral
(c) /pom/ + /pi/ → [pom.p’i] post Nasal
(d) /pok/ + /pi/ → [pok.p’i] post obstruent
Exceptionality

- 23% noun-noun compounds exceptionally does not undergo CT in a random fashion

(3)

<table>
<thead>
<tr>
<th>Regular Pattern</th>
<th>Exception</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a) /hε/ + /pap/ → [hε.p’ap]</td>
<td>(e) /koŋ/ + /pap/ → [koŋ.pap]</td>
</tr>
<tr>
<td>(b) /hε/ + /kuks’u/ → [hε.k’uks’u]</td>
<td>(f) /koŋ/ + /kuks’u/ → [koŋ.kuks’u]</td>
</tr>
<tr>
<td>(c) /pipim/ + /pap/ → [pi.pim.p’ap]</td>
<td>(g) /pipim/ + /kuks’u/ → [pi.pim.kuks’u]</td>
</tr>
<tr>
<td>(d) /koŋ/ + /karu/ → [koŋ.k’a.ru]</td>
<td>(h) /hε/ + /toci/ → [hε.to.ci]</td>
</tr>
</tbody>
</table>
23% noun-noun compounds exceptionally does not undergo CT in a random fashion (Jun 2015; Zuraw 2011; Ito 2014; Kim 2016).

(3)

<table>
<thead>
<tr>
<th>Regular Pattern</th>
<th>Exception</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a) /hε/ + /pap/ → [hε.p’ap]</td>
<td>(e) /koŋ/ + /pap/ → [koŋ.pap]</td>
</tr>
<tr>
<td>(b) /hε/ + /kuks’u/ → [hε.k’uks’u]</td>
<td>(f) /koŋ/ + /kuks’u/ → [koŋ.kuk.s’u]</td>
</tr>
<tr>
<td>(c) /pipim/ + /pap/ → [pi.pim.p’ap]</td>
<td>(g) /pipim/ + /kuks’u/ → [pi.pim.kuk.s’u]</td>
</tr>
<tr>
<td>(d) /koŋ/ + /karu/ → [koŋ.k’a.ru]</td>
<td>(h) /hε/ + /toci/ → [hε.to.ci]</td>
</tr>
</tbody>
</table>
The compound tensing exhibit continuum of **gradient preferences** depending on **both the conjuncts** W^A, W^B in the compound.

(4)

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(a)</td>
<td>/hɛ/</td>
<td>+ /pap/</td>
<td>$\rightarrow [hɛ.p’ap]$</td>
</tr>
<tr>
<td>(b)</td>
<td>/hɛ/</td>
<td>+ /kuks’u/</td>
<td>$\rightarrow [hɛ.k’uks’u]$</td>
</tr>
<tr>
<td>(c)</td>
<td>/hɛ/</td>
<td>+ /kali/</td>
<td>$\rightarrow [hɛ.ka.li]$</td>
</tr>
<tr>
<td>(d)</td>
<td>/pipim</td>
<td>+ /pap/</td>
<td>$\rightarrow [pi.pim.p’ap]$</td>
</tr>
<tr>
<td>(e)</td>
<td>/pipim</td>
<td>+ /kuks’u/</td>
<td>$\rightarrow [pi.pim.kuk.s’u]$</td>
</tr>
<tr>
<td>(f)</td>
<td>/pipim</td>
<td>+ /kali/</td>
<td>$\rightarrow [pi.pim.ka.li]$</td>
</tr>
<tr>
<td>(g)</td>
<td>/koŋ/</td>
<td>+ /pap/</td>
<td>$\rightarrow [koŋ.pap]$</td>
</tr>
<tr>
<td>(h)</td>
<td>/koŋ/</td>
<td>+ /kuks’u/</td>
<td>$\rightarrow [koŋ.kuk.s’u]$</td>
</tr>
<tr>
<td>(i)</td>
<td>/koŋ/</td>
<td>+ /kali/</td>
<td>$\rightarrow [koŋ.ka.li]$</td>
</tr>
</tbody>
</table>
The compound tenses exhibit continuum of gradient preferences depending on both the conjuncts W^A, W^B in the compound.

(4)

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(a)</td>
<td>/hɛ/ + /pap/</td>
<td>\rightarrow</td>
<td>[hɛ.p’ap]</td>
</tr>
<tr>
<td>(b)</td>
<td>/hɛ/ + /kuks’u/</td>
<td>\rightarrow</td>
<td>[hɛ.k’uks’u]</td>
</tr>
<tr>
<td>(c)</td>
<td>/hɛ/ + /kali/</td>
<td>\rightarrow</td>
<td>[hɛ.ka.li]</td>
</tr>
<tr>
<td>(d)</td>
<td>/pipim + /pap/</td>
<td>\rightarrow</td>
<td>[pi.pim.p’ap]</td>
</tr>
<tr>
<td>(e)</td>
<td>/pipim + /kuks’u/</td>
<td>\rightarrow</td>
<td>[pi.pim.kuk.s’u]</td>
</tr>
<tr>
<td>(f)</td>
<td>/pipim + /kali/</td>
<td>\rightarrow</td>
<td>[pi.pim.ka.li]</td>
</tr>
<tr>
<td>(g)</td>
<td>/koŋ/ + /pap/</td>
<td>\rightarrow</td>
<td>[koŋ.pap]</td>
</tr>
<tr>
<td>(h)</td>
<td>/koŋ/ + /kuks’u/</td>
<td>\rightarrow</td>
<td>[koŋ.kuk.s’u]</td>
</tr>
<tr>
<td>(i)</td>
<td>/koŋ/ + /kali/</td>
<td>\rightarrow</td>
<td>[koŋ.ka.li]</td>
</tr>
</tbody>
</table>
The compound tensing exhibit continuum of gradient preferences depending on both the conjuncts W^A, W^B in the compound.

(4)

(a)	/hɛ/ + /pap/ → [hɛ.p’ap]
(b)	/hɛ/ + /kuks’u/ → [hɛ.k’uks’u]
(c)	/hɛ/ + /kali/ → [hɛ.ka.li]
(d)	/pipim + /pap/ → [pi.pim.p’ap]
(e)	/pipim + /kuks’u/ → [pi.pim.kuk.s’u]
(f)	/pipim + /kali/ → [pi.pim.ka.li]
(g)	/koŋ/ + /pap/ → [koŋ.pap]
(h)	/koŋ/ + /kuks’u/ → [koŋ.kuk.s’u]
(i)	/koŋ/ + /kali/ → [koŋ.ka.li]
The compound tenses exhibit continuum of gradient preferences depending on both the conjuncts W^A, W^B in the compound.

\[(4)\]

- (a) /hε/ + /pap/ → [hε.p’ap]
- (b) /hε/ + /kuks’u/ → [hε.kuks’u]
- (c) /hε/ + /kali/ → [hε.kali]
- (d) /pipim + /pap/ → [pi.pim.p’ap]
- (e) /pipim + /kuks’u/ → [pi.pim.kuks’u]
- (f) /pipim + /kali/ → [pi.pim.kali]
- (g) /koŋ/ + /pap/ → [koŋ.pap]
- (h) /koŋ/ + /kuks’u/ → [koŋ.kuks’u]
- (i) /koŋ/ + /kali/ → [koŋ.kali]
The compound tenses exhibit continuum of gradient preferences depending on both the conjuncts W^A, W^B in the compound.

\[(a) \, /\text{hɛ}/ + /\text{pap}/ \rightarrow [\text{hɛ.p’ap}] \\
(b) \, /\text{pipim}/ + /\text{pap}/ \rightarrow [\text{pi.pim.p’ap}] \\
(c) \, /\text{kɔŋ}/ + /\text{pap}/ \rightarrow [\text{kɔŋ.pap}] \\
(d) \, /\text{hɛ}/ + /\text{kuk’s’u}/ \rightarrow [\text{hɛ.kuk’s’u}] \\
(e) \, /\text{pipim}/ + /\text{kuk’s’u}/ \rightarrow [\text{pi.pim.k’uk.s’u}] \\
(f) \, /\text{kɔŋ}/ + /\text{kuk’s’u}/ \rightarrow [\text{kɔŋ.kuk.s’u}] \\
(g) \, /\text{hɛ}/ + /\text{kali}/ \rightarrow [\text{hɛ.kali}] \\
(h) \, /\text{pipim}/ + /\text{kali}/ \rightarrow [\text{pi.pim.kali}] \\
(i) \, /\text{kɔŋ}/ + /\text{kali}/ \rightarrow [\text{kɔŋ.kali}] \]
The compound tensing exhibit continuum of **gradient preferences** depending on both the conjuncts W^A, W^B in the compound.

(5)

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(a)</td>
<td>/hɛ/</td>
<td>+</td>
<td>/pap/</td>
<td>\rightarrow [hɛ.p’ap]</td>
</tr>
<tr>
<td>(b)</td>
<td>/pipim/</td>
<td>+</td>
<td>/pap/</td>
<td>\rightarrow [pi.pim.p’ap]</td>
</tr>
<tr>
<td>(c)</td>
<td>/koŋ/</td>
<td>+</td>
<td>/pap/</td>
<td>\rightarrow [koŋ.pap]</td>
</tr>
<tr>
<td>(d)</td>
<td>/hɛ/</td>
<td>+</td>
<td>/kuks’u/</td>
<td>\rightarrow [hɛ.kuks’u]</td>
</tr>
<tr>
<td>(e)</td>
<td>/pipim/</td>
<td>+</td>
<td>/kuks’u/</td>
<td>\rightarrow [pi.pim.k’uk.s’u]</td>
</tr>
<tr>
<td>(f)</td>
<td>/koŋ/</td>
<td>+</td>
<td>/kuks’u/</td>
<td>\rightarrow [koŋ.kuk.s’u]</td>
</tr>
<tr>
<td>(g)</td>
<td>/hɛ/</td>
<td>+</td>
<td>/kali/</td>
<td>\rightarrow [hɛ.ka.li]</td>
</tr>
<tr>
<td>(h)</td>
<td>/pipim/</td>
<td>+</td>
<td>/kali/</td>
<td>\rightarrow [pi.pim.ka.li]</td>
</tr>
<tr>
<td>(i)</td>
<td>/koŋ/</td>
<td>+</td>
<td>/kali/</td>
<td>\rightarrow [koŋ.ka.li]</td>
</tr>
</tbody>
</table>
Gradient Pattern of Tensing

The compound tensening exhibit continuum of *gradient preferences* depending on both the conjuncts W^A, W^B in the compound.

(5)

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(a)</td>
<td>/hɛ/ + /pap/</td>
<td>\rightarrow [hɛ.p’ap]</td>
</tr>
<tr>
<td>(b)</td>
<td>/pipim/ + /pap/</td>
<td>\rightarrow [pi.pim.p’ap]</td>
</tr>
<tr>
<td>(c)</td>
<td>/koŋ/ + /pap/</td>
<td>\rightarrow [koŋ.pap]</td>
</tr>
<tr>
<td>(d)</td>
<td>/hɛ/ + /kuks’u/</td>
<td>\rightarrow [hɛ.kuks’u]</td>
</tr>
<tr>
<td>(e)</td>
<td>/pipim/ + /kuks’u/</td>
<td>\rightarrow [pi.pim.k’uk.s’u]</td>
</tr>
<tr>
<td>(f)</td>
<td>/koŋ/ + /kuks’u/</td>
<td>\rightarrow [koŋ.kuk.s’u]</td>
</tr>
<tr>
<td>(g)</td>
<td>/hɛ/ + /kali/</td>
<td>\rightarrow [hɛ.ka.li]</td>
</tr>
<tr>
<td>(h)</td>
<td>/pipim/ + /kali/</td>
<td>\rightarrow [pi.pim.ka.li]</td>
</tr>
<tr>
<td>(i)</td>
<td>/koŋ/ + /kali/</td>
<td>\rightarrow [koŋ.ka.li]</td>
</tr>
</tbody>
</table>
The compound tensing exhibit continuum of gradient preferences depending on both the conjuncts W^A, W^B in the compound.

(5)

(a)	/hɛ/ + /pap/	→ [hɛ.p’ap]
(b)	/pipim/ + /pap/	→ [pi.pim.p’ap]
(c)	/koŋ/ + /pap/	→ [koŋ.pap]
(d)	/hɛ/ + /kuks’u/	→ [hɛ.kuks’u]
(e)	/pipim/ + /kuks’u/	→ [pi.pim.k’uk.s’u]
(f)	/koŋ/ + /kuks’u/	→ [koŋ.kuk.s’u]
(g)	/hɛ/ + /kali/	→ [hɛ.ka.li]
(h)	/pipim/ + /kali/	→ [pi.pim.ka.li]
(i)	/koŋ/ + /kali/	→ [koŋ.ka.li]
Gradient Pattern of Tensing

(6) Gradient patterns for compounding tensing

\[W_A \]

(a) \(k'\text{oc}^h\)
(b) \(h\epsilon\)
(c) pipim
(d) \(k^h\text{or}\)
(e) \(k\epsilon\)

\[W_B \]

(f) \(\text{kap}\)
(g) \(\text{kalu}\)
(h) \(\text{pap}\)
(i) \(\text{kuksu}\)
(j) \(\text{toti}\)

Compound Tensing

No Compound Tensing
(6) Gradient patterns for compounding tensing

\[W_A \]
(a) k’och
(b) hε
(c) pipim
(d) khorj
(e) kε

\[W_B \]
(f) kap
(g) kalu
(h) pap
(i) kuksu
(j) toti

Compound Tensing

No Compound Tensing
(6) Gradient patterns for compounding tensing

\[W_A \]

(a) k'oc^h
(b) he
(c) pipim
(d) k^h_01\]
(e) k\varepsilon

\[W_B \]

(f) kap
(g) kalu
(h) pap
(i) kuksu
(j) toti

Compound Tensing

No Compound Tensing
There is no way in standard rule-based (Chomsky and Halle, 1968) or Optimality theory frameworks (Prince and Smolensky, 1993) where features are binary or privative, to give a word a feature that will determine its precise degree of preference for CT.
Proposal
Symbols in a linguistic representation can have **different activities**:

‘Symbols are discrete but their degree of presence in a given linguistic representation is continuously gradient’
(Smolensky and Goldrick, 2016, 2)

- (Continuous) Numerical strength from 0 to 1 can be associated to input

- Output elements are all fully active (1) as discrete forms
The underlying structure is grammatically computed inside Harmonic Grammar (Legendre et al. 1990)

It can predict lexical exceptions:

- Elements in the underlying representation of a morpheme can be too weak to undergo/trigger a certain process

- Elements associated with different activity can be strong enough to undergo/trigger the same process
I suggest that each edge of nouns in Korean may have *floating feature* \([\text{cg}]\) (Zoll 1996) with *gradient activity* in the underlying structures (Rosen 2016, 2018).

\[(7)\]

\[
\begin{array}{c}
\ldots \quad \bullet \\
| \\
\text{m} & \text{[cg]}^A_{0.4} & \text{[cg]}^B_{0.2} & \text{k} \\
| \\
\ldots \\
\end{array}
\]
- CT occurs by the **coalescence** of two stem-specific, partially activated floating \([cg]\) features and **docking** to the root node

\[(8)\]

\[
\begin{array}{c}
\cdots \\
\vdots \\
m \\
\end{array}
\begin{array}{c}
\vdots \\
\cdots \\
p \\
\end{array}
\begin{array}{c}
\text{[cg]}_{A,B}^{1} \\
\end{array}
\]
- Only when the additive combination of these features $[cg]^A, [cg]^B$ exceeds some threshold Σ does tensing occur.

\[(9)\] A hierarchy of 5-level of activation values for compounding tensing

<table>
<thead>
<tr>
<th>$[cg]_A / [cg]_B$</th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>\times</td>
<td>\times</td>
</tr>
<tr>
<td></td>
<td>\times</td>
<td>\times</td>
</tr>
<tr>
<td></td>
<td>\times</td>
<td>\times</td>
</tr>
<tr>
<td></td>
<td>\times</td>
<td>\checkmark</td>
</tr>
<tr>
<td>1</td>
<td>\checkmark</td>
<td>\checkmark</td>
</tr>
</tbody>
</table>
Only when the additive combination of these features \([cg]^A,^B\) exceeds some threshold \(\Sigma\) does tensing occur.

\[
\begin{array}{c|ccccc}
[\text{cg}]_A / [\text{cg}]_B & 0 & \cdots & \cdots & \cdots & 1 \\
\hline
\times & \times & \times & \times & \checkmark \\
\times & \times & \times & \checkmark & \checkmark \\
\times & \times & \checkmark & \checkmark & \checkmark \\
\times & \checkmark & \checkmark & \checkmark & \checkmark \\
\checkmark & \checkmark & \checkmark & \checkmark & \checkmark \\
\end{array}
\]
Constraints

- **Max[cg]**: Input must have output correspondents. It **rewards** underlying activity that makes it to the surface.
 - i.e., the more strength the feature bears, the more rewards it induces when it realizes

- **Ident[cg]**: The specification for the feature [cg] of an input segment must be preserved in its output correspondent.
 - i.e., it **penalizes** the feature change

- **Uniformity[cg]**: No feature [cg] in the output has multiple correspondents in the input.
 - i.e., ‘No coalescence’
This analysis accounts for the gradient nature of CT.

The Harmony of the representation τ is:

$$H(r) = 1 \cdot C_{\text{Max}[cg]}(r) - 0.6 \cdot C_{\text{Ident}[cg]}(r) - 0.1 \cdot C_{\text{Uniformity}[cg]}(r)$$

The candidate with maximal harmony in its candidate set is the optimal output.

Optimization : Compound Tensing

\[W_A : /\text{pipim}/ - \tau : 0.4, \ W_B : /\text{pap}/ - \tau : 0.4 \]

(11) \(T_1. \text{pipim} + \text{pap} \rightarrow [\pi.\text{pim.p'ap}] \)

<table>
<thead>
<tr>
<th></th>
<th>(\text{Max}) ([c.g])</th>
<th>(w = 100)</th>
<th>(\text{Ident}) ([c.g])</th>
<th>(w = -60)</th>
<th>(\text{Uniformity}) ([c.g])</th>
<th>(w = -10)</th>
<th>(H)</th>
</tr>
</thead>
<tbody>
<tr>
<td>O_1 :</td>
<td>(\ldots)</td>
<td>(\text{[cg]}_0^{x})</td>
<td>(\text{[cg]}_0^{y})</td>
<td>(\ldots)</td>
<td>(\text{m})</td>
<td>(\text{p})</td>
<td>(\text{0})</td>
</tr>
<tr>
<td>O_2 :</td>
<td>(\ldots)</td>
<td>(\text{[cg]}_1^{x,y})</td>
<td>(\ldots)</td>
<td>(\text{m})</td>
<td>(\text{p})</td>
<td>(0.4+0.4)</td>
<td>(\text{1})</td>
</tr>
</tbody>
</table>

- The sum of additive feature \([cg]\) from two conjuncts are **strong enough** to undergo CT
Optimization : No Compound Tensing

\[W_A : /\text{pipim}/ - \tau : 0.4, \ W_B : /\text{kuksu}/ - \tau : 0.2 \]

(12) \[T_2, \text{pipim} + \text{kuksu} \rightarrow [\text{pi.pim.kuk.s’u}] \]

<table>
<thead>
<tr>
<th>([\text{cg}]_0.4^x)</th>
<th>([\text{cg}]_0.2^y)</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>m</td>
<td>k</td>
<td>...</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Max ([c.g])</th>
<th>Ident ([c.g])</th>
<th>Uniformity ([c.g])</th>
<th>(H)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(w = 100)</td>
<td>(w = -60)</td>
<td>(w = -10)</td>
<td>(0)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>([\text{cg}]_1^x)</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>m</td>
<td>k</td>
</tr>
</tbody>
</table>

| (0.4+0.2) | 1 | 1 | \(-10\) |

- The total sum of the feature \([\text{cg}]\) of ‘pipim’ and ‘kuksu’ is **too weak** to undergo tensification.
Why Gradience?

Not only do words that occur as the second conjunct of a compound exhibit gradient preferences for [cg], but the first conjunct in the compound also arguably exhibits the same kind of gradient preference for triggering tensing in the word that follows it.
The error-driven learning algorithm

(13) An Architecture of Convolutional Neural Network
The error-driven learning algorithm

Step 1: Initialization

1. A learning algorithm was trained through Convolutional Neural Network (Mikolov et al. 2013)
 - It consists of 2 hidden and 1 softmax layers

2. Activation levels for $[cg]$ of the W^A s and W^Bs were initialized at 0.5

3. Constraints MAX and IDENT were initialized with unit values

4. UNIFORMITY and LINEARITY have fixed values

5. The threshold levels for the sum values of $[cg]$ for compounds were set at 0.7
The error-driven learning algorithm

Step 2 : Iteration

1. The compounds \([W^A + W^B]\) are evaluated on each iteration to check whether each gross effect of CT is correctly derived;
 - will get a reward +10 if the correct pattern is derived,
 - will get a penalty -5 if the wrong pattern is derived

2. When two coalescing activations [cg] require adjusting,
 - It randomly refills the both values of [cg] by either decrementing or incrementing them (a stepsize of 0.05)
 - MAX and IDENT adjust their weights slightly adjusted through a simulated-annealing process (De Vicente et al. 2003) \(^1\)

Step 3 : Convergence

- After 16533 iterations (i.e., when the algorithm can predict all the training set data of CT corretly) the training of this learning was converged.

1. with a decaying temperature \(T\) and random Gaussian noise \(N\) with \(m = 0\) and \(s.d. = 0.05\)
Results

Results

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Average of iterations</td>
<td>32</td>
</tr>
<tr>
<td>Final Value of Max</td>
<td>1.121</td>
</tr>
<tr>
<td>Final Value of $Ident$</td>
<td>0.69</td>
</tr>
<tr>
<td>The number of activation levels for W^A</td>
<td>5</td>
</tr>
<tr>
<td>The number of activation levels for W^B</td>
<td>5</td>
</tr>
</tbody>
</table>
Conclusion
1. This **GSR analysis** can predict all the patterns of exceptional non-undergoer of Compound Tensing successfully without any redundancy rules.

2. The intrinsic property of GSR enables the elements to bear a scalar strength and to **capture the lexical exception of alternation** in the same context.

3. Although the distinction is not visible on the surface, there are reasons to believe that obstruents in Korean has diverse patterns of different underlying structures with a **gradiently active feature** [cg].

4. The learning algorithm also supports that this scaler grammar is **learnable**.
Contact Information

Hyunjung Lee
University of Leipzig
hyunjung.lee@uni-leipzig.de

References II

- Smolensky, Paul & Matthew Goldrick (2016). Gradient symbolic representations in grammar: The case of French Liaison. ROA 1286