Suppletion under a locality constraint: an evidence from Korean

Hyunjung Lee & Irene Amato

Universität Leipzig

November 24th, 2017
1 Introduction

2 Data
- /cwu/ ~ /tuli/
- /cwu/ ~ /tal/
- Interim summary

3 Theoretical Background
- Distributed Morphology
- Locality Condition

4 Proposal

5 Analysis
- The context for /tal/ insertion
- The optionality of Pruning
- Blocking effects
- The context for /tuli/ insertion

6 Concluding remarks
Overview
Overview

- Korean exhibits three-way suppletive allomorphs of $\sqrt{\text{give}}$.
Korean exhibits three-way suppletive allomorphs of $\sqrt{\text{give}}$.

Their distribution depends on intertwined factors such as honorific dative argument, imperative marker and co-referenced anaphor (Bae 2009; Kim 2016).
Overview

- Korean exhibits three-way suppletive allomorphs of $\sqrt{\text{give}}$.
- Their distribution depends on intertwined factors such as honorific dative argument, imperative marker and co-referenced anaphor (Bae 2009; Kim 2016).
 - the dative honorific driven /tuli/
• Korean exhibits three-way suppletive allomorphs of $\sqrt{\text{give}}$.
• Their distribution depends on intertwined factors such as honorific dative argument, imperative marker and co-referenced anaphor (Bae 2009; Kim 2016).
 1. the dative honorific driven /tuli/
 2. the imperative conditioned /tal/
Overview

- Korean exhibits three-way suppletive allomorphs of $\sqrt{\text{give}}$.
- Their distribution depends on intertwined factors such as honorific dative argument, imperative marker and co-referenced anaphor (Bae 2009; Kim 2016).
 1. the dative honorific driven /tuli/
 2. the imperative conditioned /tal/
 3. and the elsewhere form /cwu/.
Overview

(1) a. $\sqrt{\text{VERB}} - \text{NEG} - \text{HON} - \text{TNS} - \text{MOD} - \text{C}$
Overview

(2)
 a. \(\sqrt{\text{VERB}} - \text{NEG} - \text{HON} - \text{TNS} - \text{MOD} - \text{C}\)

 b. \(\sqrt{\text{VERB}} - \text{NEG} - \text{HON} - \text{TNS} - \text{MOD} - \text{C} [\text{IMP}]\)
Overview

(3)
\[\sqrt{\text{VERB}} - \text{NEG} - \text{HON} - \text{TNS} - \text{MOD} - \text{C} \]

b. \[\sqrt{\text{VERB}} - \text{NEG} - \text{HON} - \text{TNS} - \text{MOD} - \text{C} \text{ [IMP]} \]

- This data provides prima facie counter-examples, which seem to violate the adjacency restrictions on conditioning allomorphy.
Goals of this talk

Our questions:

- What is the distribution of contextual allomorphs of the root $\sqrt{\text{GIVE}}$ in Korean?
Goals of this talk

Our questions:

• What is the distribution of contextual allomorphs of the root $\sqrt{\text{GIVE}}$ in Korean?

• What are grammatical restrictions imposed on the conditioning the suppletive allomorphy?
Data
Data /cwu/ ~ /tuli/

\((4) \) a. chingwu-ka na-ekey satang-ul cwu-ess-ta.
friend-NOM I-DAT candy-ACC give-PST-DECL
‘The friend gave me a candy.’
 friend-NOM I-DAT candy-ACC give-PST-DECL
 ‘The friend gave me a candy.’

 teacher.HON.NOM I-DAT candy-ACC give-HON-PST-DECL
 ‘The teacher gave me a candy.’
 friend-NOM I-DAT candy-ACC give-PST-DECL
 ‘The friend gave me a candy.’

 teacher.HON.NOM I-DAT candy-ACC give-HON-PST-DECL
 ‘The teacher gave me a candy.’

 I-NOM teacher-DAT.HON candy-ACC give-PST-DECL
 ‘I gave the teacher a candy.’
friend-NOM I-DAT candy-ACC give-PST-DECL

‘The friend gave me a candy.’

teacher.HON.NOM I-DAT candy-ACC give-HON-PST-DECL

‘The teacher gave me a candy.’

I-NOM teacher-DAT.HON candy-ACC give-PST-DECL

‘I gave the teacher a candy.’

• When the subject NPs are honorific, Korean marks honorification suffix `-si` onto the verb.
When the subject NPs are honorific, Korean marks honorification suffix -si onto the verb.

When the indirect object of the sentence is honorified, the allomorph /tuli/ shows up instead of the elsewhere form /cwu/.
/cwu/ ～ /tal/ in Monoclauses

(9) a. (Ne) na-ekey satang-ul cwu/tal-la.
you-NOM I-DAT candy-ACC give-IMP
‘Give me a candy.’

• The alternation of /tal/ is observed in the imperative, where the dative argument is co-referential with a speaker of an utterance.
• /cwu/ appears as a free variant in the same context.
• However, /tal/ is blocked when the verb is negated, or an addressee of an utterance obtains a [+hon] feature.
/cwu/ ~ /tal/ in Monoclauses

(10) a. (Ne) na-ekey satang-ul cwu/tal-la.
 you-NOM I-DAT candy-ACC give-IMP
 ‘Give me a candy.’

b. (Ne) na-ekey satang-ul cwu/*tal-ci-ma-la.
 you-NOM I-DAT candy-ACC give-CI-NEG-IMP
 ‘(Honorific) Do not give me a candy.’

The alternation of /tal/ is observed in the imperative, where the dative argument is co-referential with a speaker of an utterance.

/cwu/ appears as a free variant in the same context.

However, /tal/ is blocked when the verb is negated, or an addressee of an utterance obtains a [+hon] feature.
/cwu/ ~ /tal/ in Monoclauses

(11) a. (Ne) na-ekey satang-ul cwu/tal-la.
you-NOM I-DAT candy-ACC give-IMP
 ‘Give me a candy.’

b. (Ne) na-ekey satang-ul cwu/*tal-ci-ma-la.
you-NOM I-DAT candy-ACC give-CI-NEG-IMP
 ‘(Honorific)Do not give me a candy.’

c. (Sensayngnim,) na-ekey satang-ul cwu/*tal-si-la.
Teacher-HON.NOM I-DAT candy-ACC give-HON-IMP
 ‘(Teacher,) give me a candy (please).’
\(/cwu/ \sim /tal/ \) in Monoclauses

\[(12) \quad \text{a.}\quad (Ne) \quad \text{na-ekey satang-ul } \text{cwu/tal-la.} \]
\[
\text{you-NOM l-DAT candy-ACC give-IMP}
\]
\`
Give me a candy.'
\[
\text{b.}\quad (Ne) \quad \text{na-ekey satang-ul } \text{cwu/*tal-ci-ma-la.} \]
\[
\text{you-NOM l-DAT candy-ACC give-CI-NEG-IMP}
\]
\`
(Honorific) Do not give me a candy.'
\[
\text{c.}\quad (Sensayngnim,) \quad \text{na-ekey satang-ul } \text{cwu/*tal-si-la.} \]
\[
\text{Teacher-HON.NOM l-DAT candy-ACC give-HON-IMP}
\]
\`
(Teacher,) give me a candy (please).'</

- The alternation of /tal/ is observed in the imperative, where the dative argument is co-referential with a speaker of an utterance.
/cwu/ ~ /tal/ in Monoclauses

(13) a. (Ne) na-ekey satang-ul cwu/tal-la.
you-NOM l-DAT candy-ACC give-IMP
‘Give me a candy.’

b. (Ne) na-ekey satang-ul cwu/*tal-ci-ma-la.
you-NOM l-DAT candy-ACC give-CI-NEG-IMP
‘(Honorific)Do not give me a candy.’

c. (Sensayngnim,) na-ekey satang-ul cwu/*tal-si-la.
Teacher-HON.NOM l-DAT candy-ACC give-HON-IMP
‘(Teacher,) give me a candy (please).’

- The alternation of /tal/ is observed in the imperative, where the dative argument is co-referential with a speaker of an utterance.
- /cwu/ appears as a free variant in the same context.
- However, /tal/ is blocked when the verb is negated, or an addressee of an utterance obtains a [+hon] feature.
In embedded clauses, the suppletive allomorph /tal/ occurs when
In embedded clauses, the suppletive allomorph /tal/ occurs when

(i) the illocutionary force of embedded clause is imperative and
In embedded clauses, the suppletive allomorph /tal/ occurs when

1. the illocutionary force of embedded clause is imperative and
2. the indirect object of embedded clause corefers to the subject of the matrix clause.
told
‘Swumi1 told Yusu to give her2 a chance.’

told
‘Swumi1 told Yusu to give her1 a chance.’
(15) a. *Cini-ka (ne-ekey) [Swumi-ekey kihoy-lul cwu/*tal-la-ko]*
 Cini-NOM (you-DAT) [Swumi-DAT [PRO chance-ACC
 malhayssta.
 give-IMP-COMP] told
 ‘Cini told (you) to give Swumi\(^1\) a chance.’

b. *Cini\(^1\)-ka Swumi-ekey [PRO\(^1\) kihoy-lul *cwu/tal-la-ko]*
 Cini-NOM Swumi-DAT [PRO chance-ACC give-IMP-COMP]
 malhayssta.
 told
 ‘Cini\(^1\) told Swumi to give her\(^1\) a chance.’
The generalization for the environment of /tal/ (in Imperatives):

- $\text{SPEAKER}^i \ldots \text{SUBJ}_{\text{matrix}} \ldots \text{RECIPIENT}_{\text{MATRIX}}^1$
- $\text{SPEAKER}_{\text{matrix}}^i \ldots \text{DP}_{\text{dat}} \ldots [\text{RECIPIENT}_{\text{emb}}^i \ldots \text{DP}_{\text{acc}}]$
Theoretical Background
Distributed Morphology

- 'Distributed': division of labor between the components of Grammar. (Halle & Marantz, 1993; Harley & Noyer 1999)
Distributed Morphology

- 'Distributed': division of labor between the components of Grammar. (Halle & Marantz, 1993; Harley & Noyer 1999)

- Syntax only manipulates abstract morpho-syntactic feature.
Distributed Morphology

- 'Distributed': division of labor between the components of Grammar. (Halle & Marantz, 1993; Harley & Noyer 1999)
- Syntax only manipulates abstract morpho-syntactic feature.
- Structure could be adjusted by morphological operation.

Suppletion under a locality constraint:

November 24th, 2017 15 / 46
Distributed Morphology

- 'Distributed': division of labor between the components of Grammar. (Halle & Marantz, 1993; Harley & Noyer 1999)

- Syntax only manipulates abstract morpho-syntactic feature.
- Structure could be adjusted by morphological operation.
- **Allomorph** may occur at Vocabulary Insertion, where phonological exponent is replaced during the derivation.
Allomorph in Distributed Morphology

Linear adjacency hypothesis: (Embick 2010)

A head α can trigger allomorphy on a head β if:

1. α and β are in the same spell out domain.
2. α and β are linearly adjacent.
Allomorph in Distributed Morphology

Linear adjacency hypothesis: (Embick 2010)

A head α can trigger allomorphy on a head β if:
(1) α and β are in the same spell out domain
(2) α and β are linearly adjacent
Allomorph in Distributed Morphology

Linear adjacency hypothesis: (Embick 2010)

A head α can trigger allomorphy on a head β if:

1. α and β are in the same spell out domain
2. α and β are linearly adjacent

(18) • a. $\checkmark \alpha- \beta$
 α can condition allomorphy on β

b. $\times \alpha- \gamma - \beta$
 α cannot condition allomorphy on β
Proposal
We claim that allomorphs selection should be conditioned by a local environment according to the competition.
• We claim that allomorphs selection should be conditioned by a local environment according to the competition.
• We account for the local context for vocabulary insertion with assumed morphological operations:
We claim that allomorphs selection should be conditioned by a local environment according to the competition.

We account for the local context for vocabulary insertion with assumed morphological operations:

- Pruning rule (Embick 2010)
- Node-sprouting rule (Choi & Harley 2017)
Pruning Operation

(19) **PRUNING:** \(\sqrt{\text{Root}} \sim [x,\emptyset], [x,\emptyset] \sim Y \rightarrow \sqrt{\text{Root}} \sim Y\) (optional)
Pruning Operation

(20) **Pruning:** $\sqrt{\text{Root}} \triangleleft [x,\emptyset], [x,\emptyset] \triangleleft Y \rightarrow \sqrt{\text{Root}} \triangleleft Y$ (optional)

- Pruning rule **eliminate nodes with zero exponents** cyclically, from inside out, so that structurally/linearly non-adjacent nodes can also interact, if all the intervening nodes have zero exponent.
Pruning Operation

(21) **Pruning**: \(\sqrt{\text{Root}} \bowtie [x, \emptyset], [x, \emptyset] \bowtie Y \rightarrow \sqrt{\text{Root}} \bowtie Y \) (optional)

- Pruning rule **eliminate nodes with zero exponents** cyclically, from inside out, so that structurally/linearly non-adjacent nodes can also interact, if all the intervening nodes have zero exponent.
- We claim that this morphological operation is available in Korean, but it is rather weak.
Node-sprouting rule

(22) \(\text{HON}^0\)-sprouting rule: \(v^0 \rightarrow [v^0 \text{HON}^0] / [\text{DP}[+\text{HON}] [\ldots v^0 \ldots]] \)
Node-sprouting rule

(25) \(\text{HON}^0 \)-sprouting rule: \(v^0 \to [v^0 \text{HON}^0] / \text{DP}[+\text{HON}] [... v^0 ...] \)

- Adopting from Choi & Harley (2016), we propose that a sprouted \([+\text{HON}]\) agreement morpheme. \((\text{HON}^0)\) is adjoined to a \(v^0\) node c-commanded by an honorific nominative NP.
Node-sprouting rule

(28) HON^0-sprouting rule: $v^0 \rightarrow [v^0 \text{HON}^0] / [\text{DP}[+\text{HON}] [\ldots v^0 \ldots]]$

- Adopting from Choi & Harley (2016), we propose that a sprouted $[+\text{HON}]$ agreement morpheme. (HON^0) is adjoined to a v^0 node c-commanded by an honorific nominative NP.
- v^0 is sprouted into HON^0 Head with $[+\text{HON}^0]$ feature, when the addressee (i.e. Conditioning DP) which c-commands the verb bears an honorific feature.
Node-sprouting rule

(31) **HON\(^0\)**-sprouting rule: \(v^0 \rightarrow [v^0 \text{HON}\(^0\)] / [\text{DP}[+\text{HON}] [\ldots v^0 \ldots]] \)

- Adopting from Choi & Harley (2016), we propose that a sprouted \([+\text{HON}]\) agreement morpheme. \((\text{HON}\(^0\))\) is adjoined to a \(v^0 \) node c-commanded by an honorific nominative NP.
- \(v^0 \) is sprouted into \(\text{HON}\(^0\) \) Head with \([+\text{HON}\(^0\)]\) feature, when the addressee (i.e. Conditioning DP) which c-commands the verb bears an honorific feature.

(32) after Spell-out

```
   v'
   /
  v
```
(34) \(\text{HON}^0 \)-sprouting rule: \(v^0 \rightarrow [v^0 \text{HON}^0] / [\text{DP}[+\text{HON}] [... v^0 ...]] \)

- Adopting from Choi & Harley (2016), we propose that a sprouted \([+\text{HON}]\) agreement morpheme. \((\text{HON}^0)\) is adjoined to a \(v^0\) node c-commanded by an honorific nominative NP.
- \(v^0\) is sprouted into \(\text{HON}^0\) Head with \([+\text{HON}^0]\) feature, when the addressee (i.e. Conditioning DP) which c-commands the verb bears an honorific feature.

(35) after Spell-out
(36) Sprouted

\[
\begin{array}{c}
\text{v'} \\
\parallel \\
v
\end{array}
\]
This is the list of the vocabulary items corresponding to the lexical entries:

a.	√GIVE	⇔	/tal/	/ DP_{DAT}[\pi:Speaker] ___ [IMP]
b.		⇔	/tuli/	/ ___ DP_{DAT} [+HON]
c.		⇔	/cwu/	elsewhere
d.	[HON]	⇔	/si/	
e.	[PRS]	⇔	∅	
f.	[NEG]	⇔	/mal/	/ ___ [IMP]
g.	[IMP]	⇔	/la/	
Analysis
The context for /tal/ insertion

- The free variation between /tal/ and /cwu/ can be explained by executing Pruning operation, which applies on the T node with [PRS].
(7a) Step 1: Pruning
• In the case where it operates T node which has a zero exponents are pruned, the verb root and C head become in the local domain and $\sqrt{\text{GIVE}}$ is replaced as /tal/.
(7b) Step 2: after PRUNING
(7c) Step 3: Vocabulary Insertion

```
(7c) Step 3: Vocabulary Insertion

(\(\text{DP}_{\text{subj}}\)\))\textsubscript{i} \rightarrow (\text{vP})

\text{t}_i \rightarrow (\text{v'})

\rightarrow (\text{VP})

\rightarrow (\text{V'})

\rightarrow (\text{V})

\rightarrow (\text{V}_j)

\rightarrow (\text{/tal/})

\rightarrow (\text{DP}_{\text{obj}})

\rightarrow (\text{t}_j)
```
The optionality of Pruning

- Otherwise, it is optional and may fail to apply, too. T head intervenes between IMP and V, and thereby /cwu/ is realized depending on the subset principle.
(8a) Step 1: **Pruning** is Skipped

![Dependency tree diagram for (8a)](attachment:dependency-tree.png)
(8b) Step 2: before Vocabulary Insertion
(8c) Step 3: Vocabulary Insertion
Turning to the case where Addressee holds honorific feature. Due to the presence of $[+{\text{HON}}]$ feature, it triggers v^0 to be sprouted into $[v^0 \text{HON}^0]$.
(9a) Step 1: Addressee has a [+Hon] feature
(9b) Step 2: v^0 is sprouted.
(9c) Step 3: Vocabulary Insertion

\[\pi: \text{Speaker}^1 \]

Address: [+Hon]

\[\text{Suppletion under a locality constraint:} \]

November 24th, 2017 35 / 46
Negation blocks /tal/

- When the clause is negated, the Neg head intervenes between T and V heads, and thereby we only can get the elsewhere form /cwu/, as described in (10a)-(10b).
(10a) Step 1: the clause is negated

\[
\pi: \text{Speaker}^1
\]

\[
\text{SAP}
\]

\[
\text{SA'}
\]

\[
\text{SA}
\]

\[
\text{CP}
\]

\[
\text{TP}
\]

\[
\text{T'}
\]

\[
\text{T}
\]

\[
\text{NegP}
\]

\[
\text{Neg}
\]

\[
\text{vP}
\]

\[
\text{t}_i
\]

\[
\text{v'}
\]

\[
\text{v}
\]

\[
\text{V}
\]

\[
\text{v}_{j}\sqrt{\text{GIVE}}
\]

\[
\text{DP}_{rec}^1
\]

\[
\text{DP}_{obj}
\]

\[
\text{obj}
\]

\[
\text{rec}
\]

\[
\text{subj}
\]

\[
\pi
\]

Suppletion under a locality constraint: November 24th, 2017
(10b) Step 2: after **PRUNING**
The context for /tuli/ insertion

- As shown in (11a)-(11b) when the dative argument possess a [+Hon] feature, it triggers the other suppletive allomorph /tuli/.
- Otherwise, it is optional and may fail to apply, too. T head intervenes between IMP and V, and thereby /cwu/ is realized depending on the subset principle.
(11a) Step 1: Dative argument has a [+Hon] feature
(11b) Step 2: Vocabulary Insertion

\[\pi: \text{Speaker}^1 \]

\[\text{SAP} \]

\[\text{SA}' \]

\[\text{CP} \]

\[\text{SA} \]

\[\text{TP} \]

\[\text{C} /\text{la}/ \]

\[(\text{DP}_{\text{subj}})_i \]

\[\text{TP} \]

\[\text{T}' \]

\[\text{T} \]

\[(\text{DP}_{\text{subj}})_i \]

\[\text{vP} \]

\[\text{v}' \]

\[\text{v} \]
Concluding remarks
Conclusion

- We have investigated three allomorphs of $\sqrt{\text{GIVE}}$ in Korean conditioned by non-local factors in the central tenant of DM.
Conclusion

• We have investigated three allomorphs of \(\sqrt{\text{GIVE}} \) in Korean conditioned by non-local factors in the central tenant of DM.

• We have provided the analysis of these complex forms of suppletion and shown the further evidence that stringent locality constraint should be hold for suppletion for prima-facie examples.
Conclusion

- We have investigated three allomorphs of $\sqrt{\text{GIVE}}$ in Korean conditioned by non-local factors in the central tenant of DM.
- We have provided the analysis of these complex forms of suppletion and shown the further evidence that stringent locality constraint should be hold for suppletion for prima-facie examples.
- The (optional) free variation can be explained with the optional application of the morphological operation pruning, rather than by unifying the condition of insertion of the two exponent.
Other cross-linguistic data shows a similar pattern of free-variation:
Other cross-linguistic data shows a similar pattern of free-variation:

- Iraqw (Afro-Asiatic, Cushitic), (Mous 1993):
 - xawn
 come.here.2SG.IND
 - xawé
 come.here.2SG.IMP
 - qwalỳ
 come.here.2SG.IMP
References I
